
NP COMPLETE

NP - Complete

• Problem P is said to be NPC if

1. P  NP, and

2. Q p P  Q  NP

• That is, the problem is in NP and every other
problem in NP is polynomial time reducible to P
so that P is at least as hard as any other problem
in NP.

Why Prove NP-Completeness?

• Though nobody has proven that P != NP, if

you prove a problem NP-Complete, most

people accept that it is probably intractable

• Therefore it can be important to prove that a

problem is NP-Complete

– Don’t need to come up with an efficient

algorithm

– Can instead work on approximation algorithms

Proving NP-Completeness

• What steps do we have to take to prove a
problem P is NP-Complete?

– Pick a known NP-Complete problem Q

– Reduce Q to P

• Describe a transformation that maps instances of Q
to instances of P, s.t. “yes” for P = “yes” for Q

• Prove the transformation works

• Prove it runs in polynomial time

– Oh yeah, prove P  NP (What if you can’t?)

The SAT Problem

• One of the first problems to be proved NP-

Complete was satisfiability (SAT):

– Given a Boolean expression on n variables, can we

assign values such that the expression is TRUE?

– Ex: ((x1 x2)  ((x1  x3)  x4)) x2

– Cook’s Theorem: The satisfiability problem is NP-

Complete

• Note: Argue from first principles, not reduction

• Proof: not here

Conjunctive Normal Form
• Even if the form of the Boolean expression is

simplified, the problem may be NP-Complete

– Literal: an occurrence of a Boolean or its negation

– A Boolean formula is in conjunctive normal form, or CNF, if

it is an AND of clauses, each of which is an OR of literals

• Ex: (x1  x2)  (x1  x3  x4)  (x5)

– 3-CNF: each clause has exactly 3 distinct literals

• Ex: (x1  x2  x3)  (x1  x3  x4)  (x5  x3  x4)

• Notice: true if at least one literal in each clause is true

The 3-CNF Problem

• Thm 36.10: Satisfiability of Boolean formulas in

3-CNF form (the 3-CNF Problem) is NP-

Complete

– Proof: Nope

• The reason we care about the 3-CNF problem is

that it is relatively easy to reduce to others

– Thus by proving 3-CNF NP-Complete we can prove

many seemingly unrelated problems

NP-Complete

3-CNF  Clique

• What is a clique of a graph G?

• A: a subset of vertices fully connected to
each other, i.e. a complete subgraph of G

• The clique problem: how large is the
maximum-size clique in a graph?

• Can we turn this into a decision problem?

• A: Yes, we call this the k-clique problem

• Is the k-clique problem within NP?

Clique is in NP

• CLIQUE = {<G,k>: G has a clique of size k}

• For x = <G,k> in CLIQUE, does there exist a
certificate y: |y| = polynomial in the length of x
and a polynomial time algorithm that can use y to
verify that x is in CLIQUE?

– Show the existence of y,

– Show that |y| = polynomial in the length of |x|,

– Give an algorithm that verifies x using y,

– Show that the algorithm runs in polynomial time in |y|
and |x| and hence in polynomial time in the length of |x|.

SO, FOUR STEPS TO SHOW THAT A PROBLEM IS
IN NP

CLIQUE is in NPC

• 2nd step to show that CLIQUE is in NPC is

• Pick up a problem known to be NPC and

– Transform (reduce) the known problem to CLIQUE

– 0 Give the transformation

1. Show that under the transformation : solution of known
problem is yes => solution to CLIQUE is yes.

2. Show that under the transformation : solution of CLIQUE is
yes => solution of the known problem is yes.

3. Show that the transformation can be done in time polynomial
in the length of an instance of the known problem.

SO, THREE STEPS TO REDUCE A KNOWN PROBLEM TO
CLIQUE.

3-CNF  Clique

• What should the reduction do?

• A: Transform a 3-CNF formula to a graph,

for which a k-clique will exist (for some k)

iff the 3-CNF formula is satisfiable

3-CNF  Clique

• The reduction:

– Let B = C1  C2  …  Ck be a 3-CNF formula with k

clauses, each of which has 3 distinct literals

– For each clause put a triple of vertices in the graph, one

for each literal

– Put an edge between two vertices if they are in different

triples and their literals are consistent, meaning not

each other’s negation

– Run an example:

B = (x  y  z)  (x  y  z)  (x  y  z)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

3-CNF  Clique

• Prove the reduction works:

– If B has a satisfying assignment, then each clause has at

least one literal (vertex) that evaluates to 1

– Picking one such “true” literal from each clause gives a

set V’ of k vertices. V’ is a clique (Why?)

– If G has a clique V’ of size k, it must contain one vertex

in each triple (clause) (Why?)

– We can assign 1 to each literal corresponding with a

vertex in V’, without fear of contradiction

Reduction takes polynomial time

• Let there be n variables in the 3-CNF with k
clauses

• Then, the input size is at least(>=) B = max{k,n}

• Any algorithm at most(<=) polynomial in B is
polynomial in the input size.

• Creating 3k vertices with no more than k^2 edges
with n variables takes no more than max{k^2
max{log 3k, log n}, n log n} time …a polynomial
in n and k and hence in B.

Make life simpler with an

assumption for future

• From now on we understand that a graph G

with |V| vertices and |E| edges can be

created and represented in time polynomial

in |V| and |E|.

• Hence in future we’ll just show that |V| and

|E| are polynomial in the input size of …..

• You can use this in the exam.

Vertex Cover Problem

• A vertex cover for a graph G is a set of

vertices incident to every edge in G

• The vertex cover problem: what is the

minimum size vertex cover in G?

• Restated as a decision problem: does a

vertex cover of size k exist in G?

• Thm 36.12: vertex cover is NP-Complete

VC is in NP

• How?

• Four steps

 --- Show the existence of y,

– Show that |y| = polynomial in the length of |x|,

– Give an algorithm that verifies x using y,

– Show that the algorithm runs in polynomial time in |y|

and |x| and hence in polynomial time in the length of |x|.

Pick up a problem known in NPC

– CLIQUE

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Clique  Vertex Cover

Clique  Vertex Cover

• Reduce k-clique to vertex cover

– The complement GC of a graph G contains

exactly those edges not in G

– Compute GC in polynomial time

– G has a clique of size k iff GC has a vertex

cover of size |V| - k

Clique  Vertex Cover

• Claim: If G has a clique of size k, GC has a
vertex cover of size |V| - k

– Let V’ be the k-clique

– Then V - V’ is a vertex cover in GC

• Let (u,v) be any edge in GC

• Then u and v cannot both be in V’ (Why?)

• Thus at least one of u or v is in V-V’ (why?), so
edge (u, v) is covered by V-V’

• Since true for any edge in GC, V-V’ is a vertex cover

Clique  Vertex Cover

• Claim: If GC has a vertex cover V’  V, with |V’|

= |V| - k, then G has a clique of size k

– For all u,v  V, if (u,v)  GC then u  V’ or

v  V’ or both (Why?)

– Contrapositive: if u  V’ and v  V’, then

(u,v)  E

– In other words, all vertices in V-V’ are connected by an

edge, thus V-V’ is a clique

– Since |V| - |V’| = k, the size of the clique is k

Vertex Cover  HCP

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Application & scope of research

of NP-Complete Problems

• Subset-sum: Given a set of integers, does there

exist a subset that adds up to some target T?

• 0-1 knapsack: when weights not just integers

• Hamiltonian path: Obvious

• Graph coloring: can a given graph be colored with

k colors such that no adjacent vertices are the same

color?

• Scope of research is finding an algorithm for these

problem whose run time complexity is Polynomial

time.

Assignment

Q.1)Show that clique is NP Complete problem.

Q.2)How to prove that problem is NP Complete

